Research on Risk Prevention to occupational exposure to MNMs in the construction sector

- A set of traditional constructive materials containing MNMs have been produced and a series of prevention strategies have been designed in order to prevent their related OHS risks.
- These materials presented reduced risks but achieved the same performance than their traditional homologous.

### MNMs	Application	Strategy
TiO₂	Self-cleaning and depolluting mortar	Use concentrated and stable dispersions
	Use n-TiO₂ supported on sepiolite microfibers (safety by design)	
SiO₂	Self-compacting concrete	Use concentrated and stable dispersions
Nanoclay	Fire resistant polymeric panels	Low energy in mixing process to reduce the particle release
	Reduce the smoke release from the panels in case of fire	
Cell NFs | Insulating polyurethane foam | Achieve good dispersions-NOAAs bounded to the matrix (to reduce the likelihood to release free NOAAs from solid matrix)
CNFs | Composite materials for electromagnetic interference shielding | Highly stable and active nanodispersions: safe handling

Supporting nanoparticles in microfibers: Safety by design

The modification of the nanoclay led to a smaller release of heat and smoke

Measurement data suggests that the occupational exposure to nano-TiO₂ is SMALLER when using sepiolite.

Occupational Exposure 8h-TWA to TiO₂ (mg/m³)

<table>
<thead>
<tr>
<th></th>
<th>n-TiO₂/Sepiolite</th>
<th>n-TiO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortar manufacturing</td>
<td>0.008</td>
<td>0.073</td>
</tr>
<tr>
<td>Mortar application</td>
<td>0.016</td>
<td>0.043</td>
</tr>
</tbody>
</table>

Safety by design
- Concentrated and stable suspensions
- Reduce dust release during the manipulation
- Chemical modifications in order to reduce smoke in case of fire

Application of depollutant mortar (nanoTiO₂)

- Safety by design
- Concentrated and stable suspensions
- Reduce dust release during the manipulation
- Chemical modifications in order to reduce smoke in case of fire