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Surface Modifiers

Proven Biocompatibility: There are a number of studies demonstrating the
biocompatibility and low toxicity of several molecules and molecular structures such
as biopolymers in the literature . The ligands, biopolymers or biocompatible
polymers are targeted while selecting and designing the surface modifiers.

Compatibility with NMs’ properties: The influence on the physical chemical
properties of NMs upon attachment of surface modifiers onto the NM surface is
important. Since the aim of the project to reduce the toxicity of NMs used in inks
and pigments, the ligand or polymeric structure attached to the NM should not
interfere with their physicochemical properties (at least with their most interested
properties such as colour).

Stability in Formulation: Dispersibility in the ink or pigment formulation and stability
of the coating on the NM surface are taken into account.

Chemical Suitability: The ligand that is planned to chemically attach to the NM
surface should be suitable for chemistry. For example; carbohydrates have several
hydroxyl groups for further chemistry.

Cost and Applicability: The selected ligand should also be a commodity and should
not increase the cost of the material excessively.

Processability: the ligand shall not hinder the successful application of the
nanoparticles, e.g. in case the ink is to be used for printing electro-conducting
elements, the ligand must be removable at acceptable conditions.



Selected Biomacromolecules

Carbohydrates
Oligonucleotides and peptides

Biocompatible polymers (as a first layer before
further modification)

Derivatized biomacromolecules



Modifiers should fulfill the requirements

Application Concerns

* Proven biocompability

Stability in formulation

Chemical suitability

Low cost

Applicability

Toxicity Concerns
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List of Surface Selected Modifiers
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Chemical Structures of Selected Surface Modifiers
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Some points to consider

« Surface properties of NMs
— Defined by the synthesis procedure
— Impurities remained on the NM surface
— Agglomeration (a major problem)

* Possible causes of toxicity: size, shape, dissolution and
chemical nature



Two Main Routes For Modification

The functionalization of the metal oxide NMs through the hydroxyl
groups via bio-ligand possessing hydroxyl group will be directly
cross-linked to the NP surface or a silica shell on to the surface of
the NPs will be formed through the cross-linking chemistry. Further
chemistry can be pursued through the functional groups on the
surface of the silica shell for the attachment of bio-ligands such
as monosaccharides, peptides, oligonucleotides and proteins.

The surface chemistry of QDs and AgNPs are quite different from
metal oxide NMs, well-known thiol-noble metal (-S-AgNP) and thiol-
QD (-S-ZnS/CdSe) formation is utilized for the chemical attachment of
the bio-ligands and polymeric structures to the NM surfaces. In a
similar fashion, either thiol-modified bio-ligands can be directly
attached to the NP surface or a shell structure completely surrounding
the NM surface can be formed.



Two Main Routes For Modification Metal Oxide NPs
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Surface Modification Strategies
Silver Nanoparticles (AgNPSs)
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Nanomaterials aimed to modify in Nanomicex
Project

 AgNPs: Used to prepare conductive inks

 ZnO NPs: For adsorption in UV region or antibacterial
properties

o« CdSe-ZnS QDs: For their fluorescence properties



Silver Nanoparticles (AgNPs)
Lee - Meisel Method
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Modification of AQNPs with thiolated carbohydrates
and biomolecules
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Influence of modification after dialysis of AQNPs on

cytotoxicity
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Characterization of AgNPs with thiolated
carbohydrates and biomolecules
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What is the source of toxicity in a AgNP
colloidal suspension?

e Isit AgNPs?

 We are investigated weather we can prepare a AgNP
suspension with low toxicity by minimizing the effects
from the synthesis procedure.

* This procedure can still be considered surface
modification (not a ligand) but reducing agent.

Accepted, Nanotechnology (IF 3.7)
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Characterization of ANPs synthesized via
varying reaction time
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AgNPs synthesized at varying citrate concentration
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Characterization of ANPs synthesized via
varying citrate concentration
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Cytotoxicity of ANPs synthesized by varying
reaction time and their supernatants
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Cytotoxicity of AgNPs synthesized by varying
citrate concentration and their supernatants
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CONCLUSIONS AND RESULTS FOR AgNPs

« The main reason for cytotoxicity of AgNPs Is free Ag*
either left in the suspension or released through
dissolution, and very small sized AgNPs. Even the
surface modification “works for larger particles in the
batch, the smaller particles continue to be toxic through
their sizes (because they are very small, only a few nm).

o A strategy “safety by design” is suggested by considering
nature of the target application. For example, change of
Ink formulation to a hydrophilic one is suggested.

« The need for hydrophobic surface chemistry for AgNPs
for their use in Iink formulations is another problem since
they cannot be reliably tested.



Zn0O NPs

Decrease cell-NPs contact (referring to size)
Decrease ion release (stop dissolution)

Problems: Agglomeration and difference in surface
chemistry from source to source
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Characterization of hydroxylated ZnO NPs
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Effect of Surface Properties on Cytotoxicity
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ZnO NPs cytotoxicity is associated with the production of intracellular reactive oxygen species (ROS). The
oxidative stress results in damage in the cellular components such as lipids, proteins and DNA. The fatty acid
oxidation results in cell death due to destruction of plasma and organelle membranes. The increased OH group
density on the NP surface upon H,O, treatment of ZnO NPs—T, decreased level of ROS production in a half ratio
compared to the bare form due to the decrease of the cell-NPs interaction. The membrane integrity destruction as
a result of the ROS production upon ZnO NPs exposure was measured lactate dehydrogenase (LDH) release to
the extracellular media. The significant decrease in LDH release after exposure of the H,O, treated ZnO NPs-T
and ZnO NP-P at 25 pg/mL and 50 pug/mL concentration levels, respectively, was the evidence of the decrease in
the cytotoxicity of ZnO NPs.
M. Altunbek, A. Baysal, M. Culha/ Colloids and Surfaces B: Biointerfaces 121 (2014) 106-113



Coating with Silica (3-Aminopropyl)-
triethoxylsilane (APTES)
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T

Bovine serum albumin (BSA) attachment onto
silica coated ZnO NPs
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Amine terminated poly(ethylene glycol) (PEG-
NH,), attachment onto silica coated ZnO NPs
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Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
(PHBV) attachment onto silica coated ZnO NPs
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Poly(lactide-co-glycolide) (PLGA) attachment
onto silica coated ZnO NPs
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Dissolution Problems with ZnO NPs

Determination of Zn content of BSA modified ZnO NPs with ICP-MS

Initial amount (mg) Determined amount by
ICP-MS (mg)
Buffer-pH 9 26 36.4
DMSO 56 56
Buffer-pH 5.5 56 93
2007 A549 Cells
150 *
2
= *
0
-‘>§ 100 - H Bare
% B Buffer-pH9
% M DMSO
S 50 1 m Buffer-pH 5.5
0 n T T
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Cytotoxicty of ZnO NPs prepared at different conditions



Toxicology Research
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CONCLUSIONS AND RESULTS FOR ZnO NPs

The initial characterization of the modified ZnO NPs suggests that all
surface modifications are successful.

Both polymers and BSA modifications helped to decrease cellular
toxicity according to pristine ZnO NPs.

When the cost and availability is considered, BSA can be a good
candidate as a surface modifier.

The most important outcome is the surface modifications must be
performed in extremely diluted suspensions by using excess amount
of modifier to cover the whole surface area of ZnO NPs.

However, there are still concerns about the dissolution of ZnO during
the modification procedure.



QD-Si-OH

Quantum Dots (QDs)
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Initial Characterization of QDs
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Glucose Modification of QDs-Si-OH
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% Cell Viability

QDs-Si-OH-Glucose Cytotoxicity Assessments
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CONCLUSIONS AND RESULTS FOR QDs

It is necessary to coat the surface of QDs with a silica layer to stop
the Cd ion release into the medium.

A strategy to modify the QDs with glucose developed.

Glucose maodification helped to reduce the cytotoxicity without
altering the fluorescing properties of QDs.

However, the need to use hydrophobic surface in the ink
formulations hinders the use of QDs modified with glucose.

A possible change in ink formulation is suggested to be able to
accommodate the QDs with hydrophilic surface.



Stability Assessments of Modified NPs
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Stability Assessment of ZnO NPs
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After incubation of the modified ZnO NPs in ink solvent, amide | and amide Il bands of BSA near

1500 and 1600 cm can be observed clearly, demonstrating the stability of ZnO NPs-BSA (YU).

A carboxyl peak at 1703 cmtand a —CH peak at 2907 cm! were appeared on the spectra of
BSA modified ZnO NPs. In addition, after 30 days incubation in ink solvent, the broad —OH band
near 3300 cm-! was turned to a sharp peak at 3292 cm .

The changes on the spectra pointed that the surface characteristics of BSA modified ZnO NPs
were changed after incubation process due to the residuals of ink solvent.



Stability Assessments of ZnO NPs (from TecStar)
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» After the incubation of the modified ZnO NPs (LBS and LS, TecStar) in ink solvent, amide |
and amide Il bands of BSA near 1500 and 1600 cm-! can be observed clearly as evidences
of the stability of the NPs.

» A carboxyl peak at 1688 cm1and —CH peaks at 2875 and 2885 cm1 were appeared on the
spectra of BSA modified ZnO NPs (LBS and LS).

 The appearance of new peaks may be associated with the residuals of the ink solvent.



Stability Assessments of ZnO NPs
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The surface coverage of ZnO NPs-BSA (YU and LBS) did not change after the

incubation of the modified NPs in ink solvent but the surface coverage of ZnO NPs
(LS) increased after incubation process unexpectedly.



Stability of glucose modified QDs
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FT-IR spectra of QDs before and during stability testing



Stability of glucose modified QDs
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Fluorescence spectra of QDs before and
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* A shift on the wavelength of

fluorescence from 580 nm to
560 nm is seen after glucose
modification.

The similar situation is seen
after the stability assessment
the wavelength of
fluorescence shifted to 580
nm from 560 nm at the 60t
day of incubation with the
decomposition of glucose on
the surface of QDs.



Stability of glucose modified QDs
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DLS spectra of glucose modified QDs
before and after stability assessments

As it can be seen from the
DLS spectra, the size of the
QDs decreased to 712 nm
from 955 nm with glucose
modification.

The size of the QDs increased
due to shaking during
incubation. We could not get
any data from the samples
belong to the 30" and 60t
days of incubation caused by
the agglomeration of the QDs.



CONCLUSIONS AND RESULTS FOR
STABILITY STUDY

e According to FT-IR and TGA measurements, protein
modified ZnO NPs are stable for 60 days but the
residuals of ink solvent are detected.

* The fluorescence spectra of QDs indicate that the NPs
are stable for 45 days. After 60 days of incubation, the
glucose on the surface of the NPs are decomposed
based on FT-IR and fluorescence data.
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